Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1011496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871122

RESUMO

Clostridioides difficile is a leading cause of antibiotic-associated diarrhea and nosocomial infection in the United States. The symptoms of C. difficile infection (CDI) are associated with the production of two homologous protein toxins, TcdA and TcdB. The toxins are considered bona fide targets for clinical diagnosis as well as the development of novel prevention and therapeutic strategies. While there are extensive studies that document these efforts, there are several gaps in knowledge that could benefit from the creation of new research tools. First, we now appreciate that while TcdA sequences are conserved, TcdB sequences can vary across the span of circulating clinical isolates. An understanding of the TcdA and TcdB epitopes that drive broadly neutralizing antibody responses could advance the effort to identify safe and effective toxin-protein chimeras and fragments for vaccine development. Further, an understanding of TcdA and TcdB concentration changes in vivo can guide research into how host and microbiome-focused interventions affect the virulence potential of C. difficile. We have developed a panel of alpaca-derived nanobodies that bind specific structural and functional domains of TcdA and TcdB. We note that many of the potent neutralizers of TcdA bind epitopes within the delivery domain, a finding that could reflect roles of the delivery domain in receptor binding and/or the conserved role of pore-formation in the delivery of the toxin enzyme domains to the cytosol. In contrast, neutralizing epitopes for TcdB were found in multiple domains. The nanobodies were also used for the creation of sandwich ELISA assays that allow for quantitation of TcdA and/or TcdB in vitro and in the cecal and fecal contents of infected mice. We anticipate these reagents and assays will allow researchers to monitor the dynamics of TcdA and TcdB production over time, and the impact of various experimental interventions on toxin production in vivo.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Anticorpos de Domínio Único , Animais , Camundongos , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Enterotoxinas/genética , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Epitopos/metabolismo , Proteínas de Bactérias/metabolismo
2.
Gut Microbes ; 15(1): 2225841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350393

RESUMO

BACKGROUND & AIM: Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea and pseudomembranous colitis. Two protein toxins, TcdA and TcdB, produced by C. difficile are the major determinants of disease. However, the pathophysiological causes of diarrhea during CDI are not well understood. Here, we investigated the effects of C. difficile toxins on paracellular permeability and apical ion transporters in the context of an acute physiological infection. METHODS: We studied intestinal permeability and apical membrane transporters in female C57BL/6J mice. Üssing chambers were used to measure paracellular permeability and ion transporter function across the intestinal tract. Infected intestinal tissues were analyzed by immunofluorescence microscopy and RNA-sequencing to uncover mechanisms of transporter dysregulation. RESULTS: Intestinal permeability was increased through the size-selective leak pathway in vivo during acute CDI in a 2-day-post infection model. Chloride secretory activity was reduced in the cecum and distal colon during infection by decreased CaCC and CFTR function, respectively. SGLT1 activity was significantly reduced in the cecum and colon, accompanied by ablated SGLT1 expression in colonocytes and increased luminal glucose concentrations. SGLT1 and DRA expression was ablated by either TcdA or TcdB during acute infection, but NHE3 was decreased in a TcdB-dependent manner. The localization of key proteins that link filamentous actin to the ion transporters in the apical plasma membrane was unchanged. However, Sglt1, Nhe3, and Dra were drastically reduced at the transcript level, implicating downregulation of ion transporters in the mechanism of diarrhea during CDI. CONCLUSIONS: CDI increases intestinal permeability and decreases apical abundance of NHE3, SGLT1, and DRA. This combination likely leads to dysfunctional water and solute absorption in the large bowel, causing osmotic diarrhea. These findings provide insights into the pathophysiological mechanisms underlying diarrhea and may open novel avenues for attenuating CDI-associated diarrhea.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Animais , Feminino , Camundongos , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Diarreia , Regulação para Baixo , Camundongos Endogâmicos C57BL , Permeabilidade , Trocador 3 de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo
3.
Plant Direct ; 6(8): e432, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36035898

RESUMO

A future in which scientific discoveries are valued and trusted by the general public cannot be achieved without greater inclusion and participation of diverse communities. To envision a path towards this future, in January 2019 a diverse group of researchers, educators, students, and administrators gathered to hear and share personal perspectives on equity, diversity, and inclusion (EDI) in the plant sciences. From these broad perspectives, the group developed strategies and identified tactics to facilitate and support EDI within and beyond the plant science community. The workshop leveraged scenario planning and the richness of its participants to develop recommendations aimed at promoting systemic change at the institutional level through the actions of scientific societies, universities, and individuals and through new funding models to support research and training. While these initiatives were formulated specifically for the plant science community, they can also serve as a model to advance EDI in other disciplines. The proposed actions are thematically broad, integrating into discovery, applied and translational science, requiring and embracing multidisciplinarity, and giving voice to previously unheard perspectives. We offer a vision of barrier-free access to participation in science, and a plant science community that reflects the diversity of our rapidly changing nation, and supports and invests in the training and well-being of all its members. The relevance and robustness of our recommendations has been tested by dramatic and global events since the workshop. The time to act upon them is now.

4.
PLoS Pathog ; 18(2): e1010323, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176123

RESUMO

Clostridioides difficile infection (CDI) is the leading cause of nosocomial diarrhea and pseudomembranous colitis in the USA. In addition to these symptoms, patients with CDI can develop severe inflammation and tissue damage, resulting in life-threatening toxic megacolon. CDI is mediated by two large homologous protein toxins, TcdA and TcdB, that bind and hijack receptors to enter host cells where they use glucosyltransferase (GT) enzymes to inactivate Rho family GTPases. GT-dependent intoxication elicits cytopathic changes, cytokine production, and apoptosis. At higher concentrations TcdB induces GT-independent necrosis in cells and tissue by stimulating production of reactive oxygen species via recruitment of the NADPH oxidase complex. Although GT-independent necrosis has been observed in vitro, the relevance of this mechanism during CDI has remained an outstanding question in the field. In this study we generated novel C. difficile toxin mutants in the hypervirulent BI/NAP1/PCR-ribotype 027 R20291 strain to test the hypothesis that GT-independent epithelial damage occurs during CDI. Using the mouse model of CDI, we observed that epithelial damage occurs through a GT-independent process that does not involve immune cell influx. The GT-activity of either toxin was sufficient to cause severe edema and inflammation, yet GT activity of both toxins was necessary to produce severe watery diarrhea. These results demonstrate that both TcdA and TcdB contribute to disease pathogenesis when present. Further, while inactivating GT activity of C. difficile toxins may suppress diarrhea and deleterious GT-dependent immune responses, the potential of severe GT-independent epithelial damage merits consideration when developing toxin-based therapeutics against CDI.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Animais , Anticorpos Antibacterianos , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Infecções por Clostridium/patologia , Diarreia , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Humanos , Inflamação , Camundongos , Necrose
5.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33468584

RESUMO

Clostridioides difficile is linked to nearly 225,000 antibiotic-associated diarrheal infections and almost 13,000 deaths per year in the United States. Pathogenic strains of C. difficile produce toxin A (TcdA) and toxin B (TcdB), which can directly kill cells and induce an inflammatory response in the colonic mucosa. Hirota et al. (S. A. Hirota et al., Infect Immun 80:4474-4484, 2012) first introduced the intrarectal instillation model of intoxication using TcdA and TcdB purified from VPI 10463 (VPI 10463 reference strain [ATCC 43255]) and 630 C. difficile strains. Here, we expand this technique by instilling purified, recombinant TcdA and TcdB, which allows for the interrogation of how specifically mutated toxins affect tissue. Mouse colons were processed and stained with hematoxylin and eosin for blinded evaluation and scoring by a board-certified gastrointestinal pathologist. The amount of TcdA or TcdB needed to produce damage was lower than previously reported in vivo and ex vivo Furthermore, TcdB mutants lacking either endosomal pore formation or glucosyltransferase activity resemble sham negative controls. Immunofluorescent staining revealed how TcdB initially damages colonic tissue by altering the epithelial architecture closest to the lumen. Tissue sections were also immunostained for markers of acute inflammatory infiltration. These staining patterns were compared to slides from a human C. difficile infection (CDI). The intrarectal instillation mouse model with purified recombinant TcdA and/or TcdB provides the flexibility needed to better understand structure/function relationships across different stages of CDI pathogenesis.


Assuntos
Clostridioides difficile/patogenicidade , Suscetibilidade a Doenças , Enterocolite Pseudomembranosa/microbiologia , Enterotoxinas/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Animais , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/genética , Colo , Modelos Animais de Doenças , Enterotoxinas/genética , Humanos , Imuno-Histoquímica , Mucosa Intestinal/patologia , Camundongos , Proteínas Mutantes
6.
Plant Dis ; 105(6): 1581-1595, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33107795

RESUMO

The gram-positive actinobacterium Clavibacter michiganensis is the causal agent of bacterial canker of tomato, an economically impactful disease with a worldwide distribution. This seedborne pathogen systemically colonizes tomato xylem leading to unilateral leaflet wilt, marginal leaf necrosis, stem and petiole cankers, and plant death. Additionally, splash dispersal of the bacterium onto fruit exteriors causes bird's-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through xylem and through penetration of fruit tissues from the exterior. There are currently no commercially available resistant cultivars, and bactericidal sprays have limited efficacy for managing the disease once the pathogen is in the vascular system. In this review, we summarize research on epidemiology, host colonization, the bacterial genetics underlying virulence, and management of bacterial canker. Finally, we highlight important areas of research into this pathosystem that have the potential to generate new strategies for prevention and mitigation of bacterial canker.


Assuntos
Actinobacteria , Actinomycetales , Solanum lycopersicum , Doenças das Plantas , Virulência
7.
Phytopathology ; 110(3): 574-581, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31725349

RESUMO

Clavibacter michiganensis is the Gram-positive causal agent of bacterial canker of tomato, an economically devastating disease with a worldwide distribution. C. michiganensis colonizes the xylem, leading to unilateral wilt, stem canker, and plant death. C. michiganensis can also infect developing tomato fruit through splash dispersal, forming exterior bird's eye lesions. There are no documented sources of qualitative resistance in Solanum spp.; however, quantitative trait loci conferring tolerance in Solanum arcanum and Solanum habrochaites have been identified. Mechanisms of tolerance and C. michiganensis colonization patterns in wild tomato species remain poorly understood. This study describes differences in symptom development and colonization patterns of the wild type (WT) and a hypervirulent bacterial expansin knockout (ΔCmEXLX2) in wild and cultivated tomato genotypes. Overall, WT and ΔCmEXLX2 cause less severe symptoms in wild tomato species and are impeded in spread and colonization of the vascular system. Laser scanning confocal microscopy and scanning electron microscopy were used to observe preferential colonization of protoxylem vessels and reduced intravascular spread in wild tomatoes. Differences in C. michiganensis in vitro growth and aggregation were determined in xylem sap, which may suggest that responses to pathogen colonization are occurring, leading to reduced colonization density in wild tomato species. Finally, wild tomato fruit was determined to be susceptible to C. michiganensis through in vivo inoculations and assessing lesion numbers and size. Fruit symptom severity was in some cases unrelated to severity of symptoms during vascular infection, suggesting different mechanisms for colonization of different tissues.


Assuntos
Actinomycetales , Infecções , Solanum lycopersicum , Solanum , Actinobacteria , Clavibacter , Humanos , Doenças das Plantas
9.
Mol Plant Pathol ; 19(5): 1210-1221, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28868644

RESUMO

Expansin proteins, which loosen plant cell walls, play critical roles in normal plant growth and development. The horizontal acquisition of functional plant-like expansin genes in numerous xylem-colonizing phytopathogenic bacteria suggests that bacterial expansins may also contribute to virulence. To investigate the role of bacterial expansins in plant diseases, we mutated the non-chimeric expansin genes (CmEXLX2 and RsEXLX) of two xylem-inhabiting bacterial pathogens, the Actinobacterium Clavibacter michiganensis ssp. michiganensis (Cmm) and the ß-proteobacterium Ralstonia solanacearum (Rs), respectively. The Cmm ΔCmEXLX2 mutant caused increased symptom development on tomato, which was characterized by more rapid wilting, greater vascular necrosis and abundant atypical lesions on distant petioles. This increased disease severity correlated with larger in planta populations of the ΔCmEXLX2 mutant, even though the strains grew as well as the wild-type in vitro. Similarly, when inoculated onto tomato fruit, ΔCmEXLX2 caused significantly larger lesions with larger necrotic centres. In contrast, the Rs ΔRsEXLX mutant showed reduced virulence on tomato following root inoculation, but not following direct petiole inoculation, suggesting that the RsEXLX expansin contributes to early virulence at the root infection stage. Consistent with this finding, ΔRsEXLX attached to tomato seedling roots better than the wild-type Rs, which may prevent mutants from invading the plant's vasculature. These contrasting results demonstrate the diverse roles of non-chimeric bacterial expansins and highlight their importance in plant-bacterial interactions.


Assuntos
Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/microbiologia , Ralstonia solanacearum/metabolismo , Solanum lycopersicum/microbiologia , Actinobacteria/patogenicidade , Proteínas de Bactérias/genética , Frutas/microbiologia , Genes Bacterianos , Funções Verossimilhança , Mutação/genética , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidade , Plântula/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...